Seismic reflection and ground‐penetrating radar imaging of a shallow aquifer

Author:

Cardimona Steven J.1,Clement William P.2,Kadinsky‐Cade Katharine3

Affiliation:

1. University of Missouri‐Rolla, Rolla, Missouri 65409-0410.

2. Boston College, 29 Randolph Road, Hanscom AFB, Massachusetts 01731-3010.

3. Air Force Phillips Laboratory, 29 Randolph Road, Hanscom AFB, Massachusetts 01731-3010.

Abstract

In 1995 and 1996, researchers associated with the US Air Force’s Phillips and Armstrong Laboratories took part in an extensive geophysical site characterization of the Groundwater Remediation Field Laboratory located at Dover Air Force Base, Dover, Delaware. This field experiment offered an opportunity to compare shallow‐reflection profiling using seismic compressional sources and low‐frequency ground‐penetrating radar to image a shallow, unconfined aquifer. The main target within the aquifer was the sand‐clay interface defining the top of the underlying aquitard at 10 to 14 m depth. Although the water table in a well near the site was 8 m deep, cone penetration geotechnical data taken across the field do not reveal a distinct water table. Instead, cone penetration tests show a gradual change in electrical properties that we interpret as a thick zone of partial saturation. Comparing the seismic and radar data and using the geotechnical data as ground truth, we have associated the deepest coherent event in both reflection data sets with the sand‐clay aquitard boundary. Cone penetrometer data show the presence of a thin lens of clays and silts at about 4 m depth in the north part of the field. This shallow clay is not imaged clearly in the low‐frequency radar profiles. However, the seismic data do image the clay lens. Cone penetrometer data detail a clear change in the soil classification related to the underlying clay aquitard at the same position where the nonintrusive geophysical measurements show a change in image character. Corresponding features in the seismic and radar images are similar along profiles from common survey lines, and results of joint interpretation are consistent with information from geotechnical data across the site.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3