Analog modeling of fault asperity kinematics using a modified squeeze-box design and wax media

Author:

Mookerjee Matty1,Kucker Kyle1,Swain Taylor1,Martin Daniel1,Paquette Paige1

Affiliation:

1. Sonoma State University, Department of Geology, Rohnert Park, California, USA..

Abstract

Fault movement is strongly influenced by the physical characteristics of the fault surfaces. Fault surfaces are generally nonplanar and have a certain amount of roughness to them, which manifests as fault asperities. In order for a fault to continue moving along its preexisting surface, the asperities must either move past each other, which involves moving a large volume of rock around these obstacles, or create new fractures that “decapitate” and pulverize these asperities, ultimately leading to a smoother fault surface. We explore a new way to investigate fault asperity kinematics using a squeeze-box analog deformation rig. The more typical and classic squeeze-box model uses sand and/or clay to demonstrate fault and fold deformations. We have designed and built a new analog modeling rig that uses a dual-wax analog material. One constituent is white spherical wax particles that have been embedded in a lower-melting-temperature black matrix wax. Deformation of the analog material is facilitated by the addition of heating elements lining the underside and exterior walls of the squeeze-box reservoir. An aluminum asperity is secured to the floor of the reservoir. Additional overburden is simulated with lead shot that rests on the top surface of the wax block during deformation. Once the experiment is completed, the wax block can be finely sectioned, polished, and scanned in preparation for analysis. Here, we present the first results from this new deformation rig where we were able to generate realistic looking deformation features at different strain rate conditions. The results of this type of modeling provide unique information about fault localization, the role of fluids, and fault asperity kinematics in a polyphase system for a variety of physical conditions within the earth’s crust. These conditions are difficult to model with other analog or numerical techniques or to derive from field or seismic investigations.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3