Characteristics and origin of the Sinian-Permian fault system and its controls on the formation of paleo-carbonate reservoirs: A case study from Central Paleo-Uplift, Sichuan Basin, China

Author:

Li Wenke1,Wang Jun1,Li Jinsong1,Liu Xiaohong1,Chen Kang2,He Qinglin2

Affiliation:

1. Research Institute of Petroleum E&D, PetroChina, Beijing, China..

2. Research Institute of Petroleum E&D, Southwest Oil & Gasfield Company, PetroChina, Chengdu, China..

Abstract

We have evaluated the existence of good paleo-carbonate reservoirs in fault damage zones with a burial depth exceeding 5800 m in the Central Paleo-Uplift, Sichuan Basin, China. The relationships between fault system and sedimentation, and the formation of the paleo-carbonate reservoirs have been explored, which have long been ignored by previous studies due to the low-quality seismic data and the prevalent assumption of weak tectonic movement. Data from different sources such as newly acquired and processed seismic data, cores, and well-logs are used to study the characteristics and origin of the fault system and their controls on the formation of paleo-carbonate reservoirs. The main findings are as follows: (1) The Sinian-Permian fault system in the study area mainly comprises strike-slip faults with different scales plus a small number of locally developed collapse-related concentric faults. (2) The Sinian-Permian fault system, which usually has normal throw, mainly developed in an extensional stress field and its evolution spanned five stages including the basement-fault formation stage in the Yangtze cycle, extensional dextral strike-slip faults formation stage in the Xingkai cycle, weakly compressional sinistral strike-slip faults formation stage in the Caledonian cycle, extensional faults formation stage in the Hercynian cycle, and compressional transformation stage in the Indosinian-Himalayan cycles. Most faults formed in the Xingkai and Caledonian cycles, whereas the Indosinian-Himalayan cycles had a weak effect on the Sinian-Permian fault system in the study area. (3) Different types of faults have different effects on the sedimentation, formation, and preservation of the paleo-carbonate reservoirs. The synsedimentary faults provide necessary tectonic background for the sedimentation of high-energy facies, whereas the successive faults and coalesced fractures determine the formation, distribution, and preservation of the porous karst carbonate reservoirs. The basement faults controlling the hydrothermal fluids only cause partial filling of the existing pore spaces; thus, most pore spaces in the karst carbonate reservoirs are able to be preserved. Therefore, the fault damage zones within the paleo-carbonate strata produce good reservoirs and important exploration targets.

Funder

China State Key Science and Technology Project

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3