Characterizing carbonate facies using high-definition frequency decomposition: Case study from North West Australia

Author:

Al-Maghlouth Mohammed1,Szafian Peter2,Bell Rebecca3

Affiliation:

1. Formerly Imperial College, London, UK; presently Saudi Aramco, Dhahran, Saudi Arabia..

2. GeoTeric, London, UK..

3. Imperial College, London, UK..

Abstract

Carbonate facies identification is difficult using conventional seismic attributes due to subtle lithologic changes that cannot be easily recognized. Therefore, there is a need to develop new methodologies to study their evolution and their associated sedimentary processes, which will eventually lead to better prediction for reservoir-quality rocks. New insights into the Cenozoic carbonates in North West Australia have been captured with the application of a high-definition seismic attribute workflow. The workflow starts with conditioning of the seismic volume using structurally oriented noise attenuation filters to remove any random and coherent noise from the input data. It also benefits from a high-definition frequency decomposition that matches the original seismic resolution without smearing interfaces using a “matching pursuit” algorithm. A color blend of multigeometric attributes, such as semblance and conformance, has also been used in the workflow to define edges and discontinuities present in the data within carbonate deposits that are attributed to depositional geometries, such as barrier reefs. Our workflow has been developed to investigate the geomorphology and the sedimentary processes affecting Cenozoic successions in the Northern Carnarvon Basin in North West Australia. Geomorphological and sedimentological observations have been documented such as an Eocene rounded carbonate ramp with evidence of slump blocks and scarps, Middle Miocene accretions generated due to longshore drift, and the presence of Pliocene-Pleistocene patch and barrier reefs. These observations were extracted as geobodies to allow for visualization, and they can be used in an automated seismically based facies classification scheme. The new appreciations are not only useful for understanding the carbonate evolution but can also be used to identify geohazards such as slumps ahead of future drilling.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3