Igneous seismic geomorphology of buried lava fields and coastal escarpments on the Vøring volcanic rifted margin

Author:

Planke Sverre1,Millett John M.2,Maharjan Dwarika3,Jerram Dougal A.4,Abdelmalak Mohamed Mansour5,Groth Audun6,Hoffmann Jasper7,Berndt Christian7,Myklebust Reidun8

Affiliation:

1. Volcanic Basin Petroleum Research (VBPR), Oslo, Norway and University of Oslo, The Centre for Earth Evolution and Dynamics (CEED), Oslo, Norway..

2. Volcanic Basin Petroleum Research (VBPR), Oslo, Norway and University of Aberdeen, Department of Geology and Petroleum Geology, Aberdeen, UK..

3. Volcanic Basin Petroleum Research (VBPR), Oslo, Norway..

4. DougalEARTH Ltd., Solihull, UK and University of Oslo, The Centre for Earth Evolution and Dynamics (CEED), Oslo, Norway..

5. University of Oslo, The Centre for Earth Evolution and Dynamics (CEED), Oslo, Norway..

6. Statoil, Oslo, Norway..

7. GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany..

8. TGS, Asker, Norway..

Abstract

Voluminous igneous complexes are commonly present in sedimentary basins on volcanic rifted margins, and they represent a challenge for petroleum explorationists. A [Formula: see text] industry-standard 3D seismic cube has recently been acquired on the Vøring Marginal High offshore mid-Norway to image subbasalt sedimentary rocks. This cube also provides a unique opportunity for imaging top- and intrabasalt structures. Detailed seismic geomorphological interpretation of the top-basalt horizon, locally calibrated with high-resolution P-Cable wide-azimuth data, reveals new insight into the late-stage development of the volcanic flow fields and the kilometer-high coastal Vøring Escarpment. Subaerial lava flows with compressional ridges and inflated lava lobes cover the marginal high, with a comparable structure and size to modern subaerial lava fields. Pitted surfaces, likely formed by lava emplaced in a wet environment, are present in the western part of the study area near the continent-ocean boundary. The prominent Vøring Escarpment formed when eastward-flowing lava reached the coastline. The escarpment morphology is influenced by preexisting structural highs, and these highs are locally bypassed by the lava. Volcanogenic debris flows are well-imaged on the escarpment horizon, along with large-scale large slump blocks. Similar features exist in active volcanic environments, e.g., on the south coast of Hawaii. Numerous postvolcanic extensional faults and incised channels cut into the marginal high and the escarpment, and we found that the area was geologically active after the volcanism ceased. In summary, igneous seismic geomorphology and seismic volcanostratigraphy are two very powerful methods to understand the volcanic deposits and development of rifted margins. Our study demonstrates great promise for further understanding the igneous development of offshore basins as more high-quality 3D seismic data become available.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3