Two-step joint PP- and PS-wave three-term amplitude-variation with offset inversion

Author:

Du Qizhen1,Zhang Bo2,Meng Xianjun3,Guo Chengfeng1,Chen Gang4,Huo Guodong1

Affiliation:

1. China University of Petroleum (East China), School of Geosciences, Qingdao, China..

2. The University of Alabama, The Department of Geological Sciences, Tuscaloosa, Alabama, USA..

3. Geophysical Research Institute, Sheng li Oilfield Branch Company of Sinopec, Dongying City, People’s Republic of China..

4. Research Institute of Exploration and Development, Petro China Xinjiang Oilfield Company, Xinjiang, China..

Abstract

Three-term amplitude-variation with offset (AVO) inversion generally suffers from instability when there is limited prior geologic or petrophysical constraints. Two-term AVO inversion shows higher instability compared with three-term AVO inversion. However, density, which is important in the fluid-type estimation, cannot be recovered from two-term AVO inversion. To reliably predict the P- and S-waves and density, we have developed a robust two-step joint PP- and PS-wave three-term AVO-inversion method. Our inversion workflow consists of two steps. The first step is to estimate the P- and S-wave reflectivities using Stewart’s joint two-term PP- and PS-AVO inversion. The second step is to treat the P-wave reflectivity obtained from the first step as the prior constraint to remove the P-wave velocity related-term from the three-term Aki-Richards PP-wave approximated reflection coefficient equation, and then the reduced PP-wave reflection coefficient equation is combined with the PS-wave reflection coefficient equation to estimate the S-wave and density reflectivities. We determined the effectiveness of our method by first applying it to synthetic models and then to field data. We also analyzed the condition number of the coefficient matrix to illustrate the stability of the proposed method. The estimated results using proposed method are superior to those obtained from three-term AVO inversion.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3