Preconditioning point-source/point-receiver high-density 3D seismic data for lacustrine shale characterization in a loess mountain area

Author:

Wang Wei1,Wang Xiangzeng1,Zeng Hongliu2,Liang Quansheng1

Affiliation:

1. Research Institute of Shaanxi Yanchang Petroleum (Group) Co. Ltd, Xi’an, China..

2. The University of Texas at Austin, Bureau of Economic Geology, Jackson School of Geosciences, Austin, Texas, USA..

Abstract

In the study area, southeast of Ordos Basin in China, thick lacustrine shale/mudstone strata have been developed in the Triassic Yanchang Formation. Aiming to study these source/reservoir rocks, a 3D full-azimuth, high-density seismic survey was acquired. However, the surface in this region is covered by a thick loess layer, leading to seismic challenges such as complicated interferences and serious absorption of high frequencies. Despite a specially targeted seismic processing workflow, the prestack Kirchhoff time-migrated seismic data were still contaminated by severe noise, hindering seismic inversion and geologic interpretation. By taking account of the particular data quality and noise characteristics, we have developed a cascade workflow including three major methods to condition the poststack 3D seismic data. First, we removed the sticky coherent noise by a local pseudo [Formula: see text]-[Formula: see text]-[Formula: see text] Cadzow filtering. Then, we diminished the random noise by a structure-oriented filtering. Finally, we extended the frequency bandwidth with a spectral-balancing method based on the continuous wavelet transform. The data quality was improved after each of these steps through the proposed workflow. Compared with the original data, the conditioned final data show improved interpretability of the shale targets through geometric attribute analysis and depositional interpretation.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3