Interpretation of geologic facies in seismic volume using key rock elastic properties and high-definition facies templates

Author:

Alam Mahbub1,Makoon-Singh Sabita2,Embleton Joan1,Gray David2,Lines Larry1

Affiliation:

1. University of Calgary, Department of Geoscience, CHORUS, Calgary, Alberta, Canada..

2. Nexen Energy ULC, a CNOOC Limited Company, Calgary, Alberta, Canada..

Abstract

We have developed a deterministic workflow in mapping the small-scale (centimeter level) subseismic geologic facies and reservoir properties from conventional poststack seismic data. The workflow integrated multiscale (micrometer to kilometer level) data to estimate rock properties such as porosity, permeability, and grain size from the core data; effective porosity, resistivity, and fluid saturations using petrophysical analyses from the log data; and rock elastic properties from the log and poststack seismic data. Rock properties, such as incompressibility (lambda), rigidity (mu), and density (rho) are linked to the fine-particle-volume (FPV) ranges of different facies templates. High-definition facies templates were used in building the high-resolution (centimeter level) near-wellbore images. Facies distribution and reservoir properties between the wells were extracted and mapped from the FPV data volume built from the poststack seismic volume. Our study focused on the heavy oil-bearing Cretaceous McMurray Formation in northern Alberta. The internal reservoir architecture, such as the stacked channel bars, inclined heterolithic strata, and shale plugs, is intricate due to reservoir heterogeneity. Drilling success or optimum oil recovery will depend on whether the reservoir model accurately describes this heterogeneity. Thus, it is very important to properly identify the distribution of the permeability barriers and shale plugs in the reservoir zone. Dense vertical well control and dozens of horizontal well pairs over the area of investigation confirm a very good correlation of the geologic facies interpreted between the wells from the seismic volume.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3