Near-surface S-wave velocities estimated from traffic-induced Love waves using seismic interferometry with double beamforming

Author:

Nakata Nori1

Affiliation:

1. Stanford University, Stanford, California, USA and University of Oklahoma, Norman, Oklahoma, USA..

Abstract

I use ambient noise, especially traffic noise, to estimate the 2D near-surface S-velocity distribution. Near-surface velocities are useful for understanding structure, stiffness, porosity, and pore pressure for engineering/environmental purposes and static correction of active-source imaging. I extract Love waves propagating between each receiver pair from 12 h of traffic noise using seismic interferometry with power-normalized crosscorrelation. The receiver array contained three parallel lines, each of which had 100 transverse-component geophones. I apply double beamforming to the correlations at the parallel lines for improving the signal-to-noise ratio of the extracted Love waves to satisfy the stationary phase assumption for seismic interferometry. I use these Love waves for a dispersion analysis to estimate a 2D near-surface S-wave velocity model based on the multichannel analysis of surface waves. To improve the lateral resolution of the velocity model, I sort the extracted waves according to common midpoints (CMPs) and limited the maximum offset of receiver pairs. The dispersion analysis at each CMP is based on the assumption of layered media, and using all CMPs, I can estimate high-resolution 2D velocities down to 80 m depth. The velocity variations are similar to the location of strong reflectors obtained by a previous study. The main features of the velocity model are recovered even from 1 h of continuous traffic-noise data, which means that the proposed technique can be used for efficient 4D surveys.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3