Analysis of fluid substitution in a porous and fractured medium

Author:

Sil Samik123,Sen Mrinal K.123,Gurevich Boris123

Affiliation:

1. ConocoPhillips Company, Houston, TX..

2. University of Texas at Austin, Institute for Geophysics, Austin, TX.

3. Curtin University, Department of Exploration Geophysics, Perth, Australia and CSIRO Earth Science and Resource Engineering, Perth, Australia.

Abstract

To improve quantitative interpretation of seismic data, we analyze the effect of fluid substitution in a porous and fractured medium on elastic properties and reflection coefficients. This analysis uses closed-form expressions suitable for fluid substitution in transversely isotropic media with a horizontal symmetry axis (HTI). For the HTI medium, the effect of changing porosity and water saturation on (1) P-wave moduli, (2) horizontal and vertical velocities, (3) anisotropic parameters, and (4) reflection coefficients are examined. The effects of fracture density on these four parameters are also studied. For the model used in this study, a 35% increase in porosity lowers the value of P-wave moduli by maximum of 45%. Consistent with the reduction in P-wave moduli, P-wave velocities also decrease by maximum of 17% with a similar increment in porosity. The reduction is always larger for the horizontal P-wave modulus than for the vertical one and is nearly independent of fracture density. The magnitude of the anisotropic parameters of the fractured medium also changes with increased porosity depending on the changes in the value of P-wave moduli. The reflection coefficients at an interface of the fractured medium with an isotropic medium change in accordance with the above observations and lead to an increase in anisotropic amplitude variation with offset (AVO) gradient with porosity. Additionally, we observe a maximum increase in P-wave modulus and velocity by 30% and 8%, respectively, with a 100% increase in water saturation. Water saturation also changes the anisotropic parameters and reflection coefficients. Increase in water saturation considerably increases the magnitude of the anisotropic AVO gradient irrespective of fracture density. From this study, we conclude that porosity and water saturation have a significant impact on the four studied parameters and the impacts are seismically detectable.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3