Polynomial chaos expansion for nonlinear geophysical inverse problems

Author:

Abbasi Mostafa1ORCID,Gholami Ali1ORCID

Affiliation:

1. University of Tehran, Institute of Geophysics, Tehran, Iran..

Abstract

There are lots of geophysical problems that include computationally expensive functions (forward models). Polynomial chaos (PC) expansion aims to approximate such an expensive equation or system with a polynomial expansion on the basis of orthogonal polynomials. Evaluation of this expansion is extremely fast because it is a polynomial function. This property of the PC expansion is of great importance for stochastic problems, in which an expensive function needs to be evaluated thousands of times. We have developed PC expansion as a novel technique to solve nonlinear geophysical problems. To better evaluate the methodology, we use PC expansion for automating the velocity analysis. For this purpose, we define the optimally picked velocity model as an optimizer of a variational integral in a semblance field. However, because computation of a variational integral with respect to a given velocity model is rather expensive, it is impossible to use stochastic methods to search for the optimal velocity model. Thus, we replace the variational integral with its PC expansion, in which computation of the new function is extremely faster than the original one. This makes it possible to perturb thousands of velocity models in a matter of seconds. We use particle swarm optimization as the stochastic optimization method to find the optimum velocity model. The methodology is tested on synthetic and field data, and in both cases, reasonable results are achieved in a rather short time.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference37 articles.

1. International Journal for Numerical Methods in Engineering

2. Baudin, M., 2015, Introduction to polynomials chaos with NISP, https://forge.scilab.org/index.php/p/nisp/downloads/get/intropc-main.pdf, accessed 14 March 2016.

3. Marmousi, model and data

4. The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3