What can machine learning do for seismic data processing? An interpolation application

Author:

Jia Yongna1ORCID,Ma Jianwei1ORCID

Affiliation:

1. Harbin Institute of Technology, Department of Mathematics, Harbin, China..

Abstract

Machine learning (ML) systems can automatically mine data sets for hidden features or relationships. Recently, ML methods have become increasingly used within many scientific fields. We have evaluated common applications of ML, and then we developed a novel method based on the classic ML method of support vector regression (SVR) for reconstructing seismic data from under-sampled or missing traces. First, the SVR method mines a continuous regression hyperplane from training data that indicates the hidden relationship between input data with missing traces and output completed data, and then it interpolates missing seismic traces for other input data by using the learned hyperplane. The key idea of our new ML method is significantly different from that of many previous interpolation methods. Our method depends on the characteristics of the training data, rather than the assumptions of linear events, sparsity, or low rank. Therefore, it can break out the previous assumptions or constraints and show universality to different data sets. In addition, our method dramatically reduces the manual workload; for example, it allows users to avoid selecting the window size parameters, as is required for methods based on the assumption of linear events. The ML method facilitates intelligent interpolation between data sets with similar geomorphological structures, which can significantly reduce costs in engineering applications. Furthermore, we combine a sparse transform called the data-driven tight frame (so-called compressed learning) with the SVR method to improve the training performance, in which the training is implemented in a sparse coefficient domain rather than in the data domain. Numerical experiments show the competitive performance of our method in comparison with the traditional [Formula: see text]-[Formula: see text] interpolation method.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference52 articles.

1. Androutsopoulos, I., G. Paliouras, V. Karkaletsis, G. Sakkis, C. D. Spyropoulos, and P. Stamatopoulos, 2000, Learning to filter spam e-mail: A comparison of a naive Bayesian and a memory-based approach: Proceedings of the Workshop on Machine Learning and Textual Information Access, 4th European Conference on Principles and Practice of Knowledge Discovery in Databases, 1–13.

2. Multi-sensor data fusion using support vector machine for motor fault detection

3. Recommender systems survey

4. Denoising seismic data using the nonlocal means algorithm

5. Using association rules for product assortment decisions

Cited by 177 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3