A method of combining coherence-constrained sparse coding and dictionary learning for denoising

Author:

Turquais Pierre1ORCID,Asgedom Endrias G.2ORCID,Söllner Walter2ORCID

Affiliation:

1. Petroleum Geo-Services ASA, Lilleakerveien, Oslo, Norway and University of Oslo, Department of Geosciences, Blindern, Oslo, Norway..

2. Petroleum Geo-Services ASA, Lilleakerveien, Oslo, Norway..

Abstract

We have addressed the seismic data denoising problem, in which the noise is random and has an unknown spatiotemporally varying variance. In seismic data processing, random noise is often attenuated using transform-based methods. The success of these methods in denoising depends on the ability of the transform to efficiently describe the signal features in the data. Fixed transforms (e.g., wavelets, curvelets) do not adapt to the data and might fail to efficiently describe complex morphologies in the seismic data. Alternatively, dictionary learning methods adapt to the local morphology of the data and provide state-of-the-art denoising results. However, conventional denoising by dictionary learning requires a priori information on the noise variance, and it encounters difficulties when applied for denoising seismic data in which the noise variance is varying in space or time. We have developed a coherence-constrained dictionary learning (CDL) method for denoising that does not require any a priori information related to the signal or noise. To denoise a given window of a seismic section using CDL, overlapping small 2D patches are extracted and a dictionary of patch-sized signals is trained to learn the elementary features embedded in the seismic signal. For each patch, using the learned dictionary, a sparse optimization problem is solved, and a sparse approximation of the patch is computed to attenuate the random noise. Unlike conventional dictionary learning, the sparsity of the approximation is constrained based on coherence such that it does not need a priori noise variance or signal sparsity information and is still optimal to filter out Gaussian random noise. The denoising performance of the CDL method is validated using synthetic and field data examples, and it is compared with the K-SVD and FX-Decon denoising. We found that CDL gives better denoising results than K-SVD and FX-Decon for removing noise when the variance varies in space or time.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3