A simple finite-difference scheme for handling topography with the second-order wave equation

Author:

Mulder W. A.1ORCID

Affiliation:

1. Shell Global Solutions International B.V., Rijswijk and Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Geoscience and Engineering, Delft, The Netherlands.

Abstract

ABSTRACT The presence of topography poses a challenge for seismic modeling with finite-difference codes. The representation of topography by means of an air layer or vacuum often leads to a substantial loss of numerical accuracy. A suitable modification of the finite-difference weights near the free surface can decrease that error. An existing approach requires extrapolation of interior solution values to the exterior while using the boundary condition at the free surface. However, schemes of this type occasionally become unstable and may be impossible to implement with highly irregular topography. One-dimensional extrapolation along coordinate lines results in a simple and efficient scheme. The stability of the 1D scheme is improved by ignoring the interior point nearest to the boundary during extrapolation in case its distance to the boundary is less than half a grid spacing. The generalization of the 1D scheme to more than one dimension requires a modification if the boundary intersects the finite-difference stencil on both sides of the central evaluation point and if there are not enough interior points to build the finite-difference stencil. Examples for the 2D constant-density acoustic case with a fourth-order finite-difference scheme demonstrate the method’s capability. Because the 1D assumption is not valid in two dimensions if the boundary does not follow grid lines, the formal numerical accuracy is not always obtained, but the method can handle highly irregular topography.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3