Investigation of magnetic inversion methods in highly magnetic environments under strong self-demagnetization effect

Author:

Krahenbuhl Richard A.1,Li Yaoguo1ORCID

Affiliation:

1. Center for Gravity, Electrical & Magnetic Studies, Department of Geophysics, Colorado School of Mines, Golden, Colorado, USA..

Abstract

We investigate self-demagnetization effects on magnetic data and develop a comparison of two existing inversion methods as they apply to quantitative interpretation of such data in highly magnetic environments. We begin by evaluating the effect on magnetization direction when susceptibility is a scalar and increases from low values into the realm of self-demagnetization. We show through numerical experiments that susceptibility values of greater than 0.1 SI lead to significant self-demagnetization effects. Second, we show that conventional inversion can perform well for interpretation of self-demagnetization problems with simple source geometries. However, as the geometry becomes more complex in realistically complex problems, this approach can produce poor results and a more robust technique is required. Our numerical experiments indicate that directly inverting amplitude data, which can be derived from total-field magnetic anomaly data and are weakly dependent on magnetization direction, produces superior results when interpreting data from areas with complex geology and high magnetic susceptibilities. We conclude by evaluating the application of our preferred approach on a large field data set exhibiting strong self-demagnetization, multiple source bodies, and complex structures.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3