Application of 2D full-waveform tomography on land-streamer data for assessment of roadway subsidence

Author:

Tran Khiem T.1ORCID,Sperry Justin1

Affiliation:

1. Clarkson University, Department of Civil and Environmental Engineering, Potsdam, New York, USA..

Abstract

Roadways are key components of the modern transportation system. Therefore, assessment of roadway subsidence is critical to the health and safety of the traveling public. Existing seismic refraction and waveform tomography methods can be used for subsidence evaluation; however, the data acquisition time is significant because they require multiple source impacts (shots) along a test line. To mitigate the negative impact caused by closing the traffic flow under seismic testing, a land-streamer seismic testing system and waveform analysis are developed. An existing 2D Gauss-Newton full-waveform inversion (FWI) method is extended for analysis of the land-streamer waveform data. The main advantage of using land-streamer waveform data is that geophones are not coupled to test materials and source-receiver offsets are fixed; thus, the whole test system can be moved along the roadway quickly for data acquisition. To demonstrate the effectiveness of land-streamer waveform data, the FWI method was tested on synthetic and field data sets. The synthetic result reveals that buried voids can be well-characterized by the land-streamer waveform analysis. Field data were collected on asphalt pavement using a 24 channel land streamer and a propelled energy generator to induce seismic wave energy. The test system was towed by a pickup truck along a roadway with an on-going subsidence (repaired sinkhole). The data were collected over 277.5 m distance at a 3 m interval, and the total data acquisition time was approximately 1 h. The field data result indicates that the waveform analysis was able to delineate low-velocity soil zones and laterally variable bedrock. The FWI results are also compared with multichannel analysis of surface wave (MASW) results. The 2D [Formula: see text] profiles from the FWI and MASW methods are consistent; however, the FWI method provides more detailed information ([Formula: see text] of [Formula: see text] cells) of low-velocity anomalies for assessment of roadway subsidence.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3