Combining multidirectional source vector with antitruncation-artifact Fourier transform to calculate angle gathers from reverse time migration in two steps

Author:

Tang Chen1ORCID,McMechan George A.1ORCID

Affiliation:

1. University of Texas at Dallas, Center for Lithospheric Studies, Richardson, Texas, USA..

Abstract

Because receiver wavefields reconstructed from observed data are not as stable as synthetic source wavefields, the source-propagation vector and the reflector normal have often been used to calculate angle-domain common-image gathers (ADCIGs) from reverse time migration. However, the existing data flows have three main limitations: (1) Calculating the propagation direction only at the wavefields with maximum amplitudes ignores multiarrivals; using the crosscorrelation imaging condition at each time step can include the multiarrivals but will result in backscattering artifacts. (2) Neither amplitude picking nor Poynting-vector calculations are accurate for overlapping wavefields. (3) Calculating the reflector normal in space is not accurate for a structurally complicated reflection image, and calculating it in the wavenumber ([Formula: see text]) domain may give Fourier truncation artifacts. We address these three limitations in an improved data flow with two steps: During imaging, we use a multidirectional Poynting vector (MPV) to calculate the propagation vectors of the source wavefield at each time step and output intermediate source-angle-domain CIGs (SACIGs). After imaging, we use an antitruncation-artifact Fourier transform (ATFT) to convert SACIGs to ADCIGs in the [Formula: see text]-domain. To achieve the new flow, another three innovative aspects are included. In the first step, we develop an angle-tapering scheme to remove the Fourier truncation artifacts during the wave decomposition (of MPV) while preserving the amplitudes, and we use a wavefield decomposition plus angle-filter imaging condition to remove the backscattering artifacts in the SACIGs. In the second step, we compare two algorithms to remove the Fourier truncation artifacts that are caused by the plane-wave assumption. One uses an antileakage FT (ALFT) in local windows; the other uses an antitruncation-artifact FT, which relaxes the plane-wave assumption and thus can be done for the global space. The second algorithm is preferred. Numerical tests indicate that this new flow (source-side MPV plus ATFT) gives high-quality ADCIGs.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3