Characterization of buried cables and pipes using electromagnetic induction loop-loop frequency-domain devices

Author:

Thiesson Julien1ORCID,Tabbagh Alain1ORCID,Dabas Michel2,Chevalier Antoine1

Affiliation:

1. Sorbonne Université, Paris, France..

2. Ecole Normale Superieure, Paris, France..

Abstract

The detection and characterization of buried cables and metal pipes has become a key component of field surveys carried out prior to excavation work on construction sites. The very high conductivity and magnetic permeability contrast between any buried cables/pipes compared with the soil makes electromagnetic induction (EMI) instruments very useful for their detection. We have developed a seminumerical method that can be used to model the responses of this type of target. A straight horizontal conductor is equivalent to a series of magnetic dipoles, the magnitude of which can be determined in the spectral domain and then converted back into the spatial domain through the use of an inverse fast Fourier transform. Simulations and case studies allow to establish rules of thumb for the estimation of (1) the nature of the metal: the in-phase response of magnetic cables is of the opposite sign from the conducting ones, (2) the sensitivity to the target characteristic: the influence of the cable/pipe diameter is greater than that of the metal properties, and (3) the depth of the cables. The simulations also underline the role of the coil configuration: Vertical coplanar and perpendicular responses allow a more precise location of the cable/pipe, whereas the horizontal coplanar response is less dependent on the orientation. As ground truth, a known electric cable buried at a depth of 0.5 and 0.002 m in diameter is determined at 0.56 m. The first field test is related to the detection of a buried military cable from World War I, between 2.5 and 3 m below the original ground level. The second field test is related to the detection of a water pipe 0.35 m deep. The modeling technique can be applied to all EMI prospecting methods, and thus it opens the way to the correction of the disturbances generated by cables and pipes.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3