Spatially continuous probabilistic prediction of sparsely measured ground properties constrained by ill-posed tomographic imaging considering data uncertainty and resolution

Author:

Asadi Abduljabbar1,Dietrich Peter1,Paasche Hendrik1

Affiliation:

1. UFZ — Helmholtz Centre for Environmental Research, Department of Monitoring and Exploration Technologies, Leipzig, Germany..

Abstract

Probabilistic prediction of 2D or 3D distributions of sparsely measured borehole or direct-push logging data can contribute to solving hydrological, petroleum, or engineering exploration tasks. We use and improve a recently developed workflow constrained by ill-posed geophysical tomography to achieve 2D probabilistic predictions of geotechnical exploration target parameters that could only be measured by 1D borehole or direct-push logging. We use artificial neural networks (ANNs) to find the optimal prediction models between ensembles of equivalent geophysical tomograms and sparsely measured logging data. During the training phase of ANNs, we consider four different training strategies taking into account the logging data uncertainty and geophysical tomographic ambiguity to avoid data overfitting of the ANNs. Thus, we successfully transform the logging data uncertainty and geophysical tomographic reconstruction ambiguity as well as differences in spatial resolution of logging and tomographic models into the probabilistic 2D prediction of our target parameters in a data-driven manner, which allows application of our methodology to any combination of geophysical tomograms and hydrologic, petroleum, or engineering target parameters solely measured in boreholes. To illustrate our workflow, we use an available field data set collected at a field site south of Berlin, Germany, to characterize near-subsurface sedimentary deposits. In this example, we employ cross-borehole tomographic radar-wave velocity, P-wave velocity, and S-wave velocity models to constrain the prediction of tip resistance, sleeve friction, and dielectric permittivity as target parameters.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3