Frequency-dependent velocity analysis and offset-dependent low-frequency amplitude anomalies from hydrocarbon-bearing reservoirs in the southern North Sea, Norwegian sector

Author:

Ahmad Sayyid Suhail1ORCID,Brown R. James2ORCID,Escalona Alejandro1,Rosland Børge O.3

Affiliation:

1. University of Stavanger, Department of Petroleum Engineering, Stavanger, Norway..

2. University of Stavanger, Department of Petroleum Engineering, Stavanger, Norway and Skagen44 AS, Stavanger, Norway..

3. Skagen44 AS, Stavanger, Norway..

Abstract

Our aim was to identify some of the characteristics of low-frequency anomalies. Specifically, we have looked, in 3D broadband data from the North Sea, for any offset dependence in these anomalies and any frequency-related change in normal moveout (NMO) velocity that could influence stacking power over different frequencies. After high-resolution spectral decomposition, two types of low-frequency anomaly have been identified associated with hydrocarbon-bearing reservoirs: (1) at the reservoir top and (2) below the reservoir, with a time delay of approximately 100–200 ms. Both types of anomalies indicate offset dependence. On the near-offset stacks, they are relatively strong, but they tend to be absent on the far-offset stacks. In addition, horizon velocity analysis, which was performed along the horizons picked at the tops of reservoir and nonreservoir intervals, has revealed frequency-dependent NMO velocity. For nonreservoir events, we found no significant difference between the NMO velocities for the low-frequency and high-frequency filtered common-midpoint gathers. However, along the anomalously low-frequency events observed at the tops of, and below, oil-bearing reservoirs, lower velocity is observed for low-frequency and higher velocity for high-frequency filtered gathers. If these properties turn out to be universally typical, increased understanding and inclusion of them could lead to improved workflows and help increase the reliability of low-frequency analysis as a hydrocarbon indicator.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3