Full-waveform inversion via source-receiver extension

Author:

Huang Guanghui1ORCID,Nammour Rami2,Symes William1ORCID

Affiliation:

1. Rice University, Department of Computational and Applied Mathematics, Houston, Texas, USA..

2. Total E&P R&T, Houston, Texas, USA..

Abstract

Full-waveform inversion produces highly resolved images of the subsurface and quantitative estimation of seismic wave velocity, provided that its initial model is kinematically accurate at the longest data wavelengths. If this initialization constraint is not satisfied, iterative model updating tends to stagnate at kinematically incorrect velocity models producing suboptimal images. The source-receiver extension overcomes this “cycle-skip” pathology by modeling each trace with its own proper source wavelet, permitting a good data fit throughout the inversion process. Because source wavelets should be constant (or vary systematically) across a shot gather, a measure of source trace dependence, for example, the mean square of the signature-deconvolved wavelet scaled by time lag, can be minimized to update the velocity model. For kinematically simple data, such measures of wavelet variance are mathematically equivalent to traveltime misfit. Thus, the model obtained by source-receiver extended inversion is close to that produced by traveltime tomography, even though the process uses no picked times. For more complex data, in which energy travels from source to receiver by multiple raypaths, Green’s function spectral notches may lead to slowly decaying trace-dependent wavelets with energy at time lags unrelated to traveltime error. Tikhonov regularization of the data-fitting problem suppresses these large-lag signals. Numerical examples suggest that this regularized formulation of source-receiver extended inversion is capable of recovering reasonably good velocity models from synthetic transmission and reflection data without stagnation at suboptimal models encountered by standard full-waveform inversion, but with essentially the same computational cost.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3