Model-based amplitude versus offset and azimuth inversion for estimating fracture parameters and fluid content

Author:

Xue Jiao1ORCID,Gu Hanming1ORCID,Cai Chengguo1

Affiliation:

1. China University of Geosciences, Hubei Subsurface Multi-Scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, Wuhan, China..

Abstract

The normal-to-shear fracture compliance ratio is commonly used as a fluid indicator. In the seismic frequency range, the fluid indicator lies between the values for isolated fluid-filled fractures and dry fractures, and it is not easy to discriminate the fluid content. Assuming that the fracture surfaces are smooth, we use [Formula: see text], with [Formula: see text] and [Formula: see text] representing the normal fracture weakness of the saturated and dry rock, to indicate fluid types, and to define a fluid influencing factor. The fluid influencing factor is sensitive to the fluid properties, the aspect ratio of the fractures, and the frequency. Conventionally, the amplitude versus offset and azimuth (AVOA) inversion is formulated in terms of the contrasts of the fracture weaknesses across the interface, assuming that the fractures are vertical with the same symmetry axis. We consider fractures with arbitrary azimuths, and develop a method to estimate fracture parameters from wide-azimuth seismic data. The proposed AVOA inversion algorithm is tested on real 3D prestack seismic data from the Tarim Basin, China, and the inverted fracture density show good agreement with well log data, except that there are some discrepancies for one of the fractured reservoir sections. The discrepancies can be ascribed to neglect of the dip angle for the tilted fractures and the conjugate fracture sets, and to the validity of the linear-slip model. The fractured reservoirs are expected to be liquid saturated, under the assumption of smooth fractures. Overall, the inverted fracture density and fluid influencing factor can be potentially used for better well planning in fractured reservoirs and quantitatively estimating the fluid effects.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3