Directional structure-tensor-based coherence to detect seismic faults and channels

Author:

Wu Xinming1ORCID

Affiliation:

1. The University of Texas at Austin, Bureau of Economic Geology, Austin, Texas, USA..

Abstract

Seismic coherence is widely used in seismic interpretation and reservoir characterization to highlight (with low values) faults and stratigraphic features from a seismic image. A coherence image can be computed from the eigenvalues of conventional structure tenors, which are outer products of gradients of a seismic image. I have developed a simple but effective method to improve such a coherence image by using directional structure tensors, which are different from the conventional structure tensors in only two aspects. First, instead of using image gradients with vertical and horizontal derivatives, I use directional derivatives, computed in directions perpendicular and parallel to seismic structures (reflectors), to construct directional structure tensors. With these directional derivatives, lateral seismic discontinuities, especially those subtle stratigraphic features aligned within dipping structures, can be better captured in the structure tensors. Second, instead of applying Gaussian smoothing to each element of the constructed structure tensors, I apply approximately fault- and stratigraphy-oriented smoothing to enhance the lateral discontinuities corresponding to faults and stratigraphic features in the structure tensors. Real 3D examples show that the new coherence images computed from such structure tensors display much cleaner and more continuous faults and stratigraphic features compared with those computed from conventional structure tensors and covariance matrices.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference25 articles.

1. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube

2. Bahorich, M., and S. Farmer, 1996, Method of seismic signal processing and exploration: U.S. Patent US5563949 A.

3. Bakker, P., 2002, Image structure analysis for seismic interpretation: Ph.D. thesis, Delft University of Technology.

4. Seismic Attributes for Prospect Identification and Reservoir Characterization

5. Local discontinuity measures for 3‐D seismic data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3