Bayesian feature learning for seismic compressive sensing and denoising

Author:

Pilikos Georgios1ORCID,Faul A. C.1

Affiliation:

1. University of Cambridge, Laboratory for Scientific Computing, Maxwell Centre, Department of Physics, Cambridge, UK..

Abstract

Extracting the maximum possible information from the available measurements is a challenging task but is required when sensing seismic signals in inaccessible locations. Compressive sensing (CS) is a framework that allows reconstruction of sparse signals from fewer measurements than conventional sampling rates. In seismic CS, the use of sparse transforms has some success; however, defining fixed basis functions is not trivial given the plethora of possibilities. Furthermore, the assumption that every instance of a seismic signal is sparse in any acquisition domain under the same transformation is limiting. We use beta process factor analysis (BPFA) to learn sparse transforms for seismic signals in the time slice and shot record domains from available data, and we use them as dictionaries for CS and denoising. Algorithms that use predefined basis functions are compared against BPFA, with BPFA obtaining state-of-the-art reconstructions, illustrating the importance of decomposing seismic signals into learned features.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3