Geometric spreading in orthorhombic media

Author:

Stovas Alexey1ORCID

Affiliation:

1. Norwegian University of Science and Technology, Department of Petroleum Engineering and Applied Geophysics, Trondheim, Norway..

Abstract

Geometric spreading is an important factor that needs to be taken into account in the analysis of seismic amplitudes. In particular, when using any modification of amplitude variation with offset or amplitude versus azimuth methods, the effect of geometric spreading is crucial to isolate the effect of reflection from a particular interface. The relative geometric spreading controls the amplitude of seismic waves passing through a velocity model. In the case of an anisotropic medium, geometric spreading becomes very complicated. Usually, geometric spreading is computed from ray tracing. I have derived simple analytical formulas to compute the relative geometric spreading of P-waves in a stack of acoustic orthorhombic layers with azimuthal variations in symmetry planes. I also analyzed the kinematic properties of the derived equations and performed sensitivity analysis with respect to three anelliptic parameters. A simple and accurate approximation for the relative geometric spreading is derived and tested against well-known approximation. My approximations give insight into the role that anelliptic parameters play into the azimuthal distribution of amplitudes and can be used for amplitude analysis in multilayered orthorhombic models.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3