SWIP: An integrated workflow for surface-wave dispersion inversion and profiling

Author:

Pasquet Sylvain1ORCID,Bodet Ludovic2

Affiliation:

1. Formerly University of Wyoming, Department of Geology and Geophysics, Laramie, Wyoming, USA; presently Virginia Polytechnic Institute and State University, Department of Geosciences, Blacksburg, Virginia, USA..

2. Sorbonne Universités, Paris, France..

Abstract

The simultaneous estimation of 2D pressure (P-) and S-wave velocities ([Formula: see text] and [Formula: see text], respectively) is a promising approach for imaging subsurface mechanical properties. It can be performed with a single acquisition setup by combining P-wave refraction and surface-wave (SW) analysis. Although SW methods are commonly applied for the 1D estimation of [Formula: see text], 2D profiling requires the implementation of specific processing and inversion tools not yet widely available in the community. We have developed an open-source MATLAB-based package that performs SW inversion and profiling (SWIP) so as to retrieve 1D to 2D variations of [Formula: see text] from any kind of linear active-source near-surface seismic data. Each step of the workflow involves up-to-date processing and inversion techniques and provides ready-to-use outputs with quality control tools. First, windowing and stacking techniques are implemented to enhance the signal-to-noise ratio and extract local dispersion images along the line. Then, dispersion curves are picked for each window with an uncertainty range in the phase velocity including higher uncertainties at low frequency. These curves are next inverted using a Monte Carlo approach with various parameterizations (e.g., user defined, refraction based). The best models are finally selected according to their fit to the data to build an average final model with a suggested investigation depth. As an example, we used SWIP to process data collected at a Yellowstone hydrothermal system. Our results show the benefits of estimating [Formula: see text] and [Formula: see text] from a single seismic setup to highlight subsurface gas pathways.

Funder

CNRS

National Science Foundation

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3