Prestack correlative least-squares reverse time migration

Author:

Liu Xuejian1ORCID,Liu Yike2ORCID,Lu Huiyi2,Hu Hao3ORCID,Khan Majid1ORCID

Affiliation:

1. Institute of Geology and Geophysics, Key Laboratory of Shale Gas and Geoengineering, Chinese Academy of Sciences, Beijing, China and University of Chinese Academy of Sciences, Beijing, China..

2. Institute of Geology and Geophysics, Key Laboratory of Shale Gas and Geoengineering, Chinese Academy of Sciences, Beijing, China..

3. University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas, USA..

Abstract

In the correlative least-squares reverse time migration (CLSRTM) scheme, a stacked image is updated using a gradient-based inversion algorithm. However, CLSRTM experiences the incoherent stacking of different shots during each iteration due to the use of an imperfect velocity, which leads to image smearing. To reduce the sensitivity to velocity errors, we have developed prestack correlative least-squares reverse time migration (PCLSRTM), in which a gradient descent algorithm using a newly defined initial image and an efficiently defined analytical step length is developed to separately seek the optimal image for each shot gather before the final stacking. Furthermore, a weighted objective function is also designed for PCLSRTM, so that the data-domain gradient can avoid a strong truncation effect. Numerical experiments on a three-layer model as well as a marine synthetic and a field data set reveal the merits of PCLSRTM. In the presence of velocity errors, PCLSRTM shows better convergence and provides higher quality images as compared with CLSRTM. With the newly defined initial image, PCLSRTM can effectively handle observed data with unbalanced amplitudes. By using a weighted objective function, PCLSRTM can provide an image with enhanced resolution and balanced amplitude while avoiding many imaging artifacts.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Science

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3