Velocity anisotropy of Upper Jurassic organic-rich shales, Norwegian Continental Shelf

Author:

Koochak Zadeh Mohammad1,Haque Mondol Nazmul2,Jahren Jens1

Affiliation:

1. University of Oslo, Department of Geosciences, Oslo, Norway..

2. University of Oslo, Department of Geosciences, Oslo, Norway and Norwegian Geotechnical Institute, Oslo, Norway..

Abstract

This study investigates the seismic velocity anisotropy of two organic-rich shales from the Norwegian Continental Shelf. The tested organic-rich shale samples were from the Upper Jurassic Draupne and Hekkingen formations collected from two wells (16/8-3S and 7125/1-1) drilled in the central North Sea and western Barents Sea, respectively. The two tested shales are different in organic matter richness and thermal maturation, and they have experienced different burial histories. The shale core plugs were tested in a triaxial cell under controlled pore pressure. Seismic velocities ([Formula: see text] and [Formula: see text]) were measured along different orientations with respect to layering to identify the complete tensor of the rock elastic moduli, and to investigate the velocity anisotropy as a function of increasing effective stress. The measured velocity values exhibit strong anisotropy for the two tested organic-rich shales. The anisotropy for both shales is strongest for [Formula: see text]. Seismic velocities follow an increasing trend as the effective stress increases. The anisotropy decreases somewhat with increasing consolidation, probably due to the closing of preexisting fractures and microcracks. The reduction of anisotropy is more evident for the P-wave because it decreases from 0.32 to 0.25 for the Draupne sample and from 0.28 to 0.24 for the Hekkingen sample when the vertical effective stress increases from 26 to 50 MPa. In general, the Hekkingen sample indicates slightly higher velocity values than the Draupne sample due to more compaction and lower porosity. In spite of major differences between the two shale formations in terms of organic matter content, maturity and burial history, they indicate almost the same degree of velocity anisotropy. The outcomes of this study can contribute to better imaging of organic-rich Draupne and Hekkingen shales by constraining the rock-physics properties.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3