Improving the vibrator ground force on unconsolidated ground surfaces in Middle East desert environments

Author:

Qi Yongfei12,Wei Zhouhong3,Liang Fuhe4,Zhao Lizhong1,Criss Jason3,Li Guofa2

Affiliation:

1. BGP, CNPC, Zhuozhou, He Bei, China..

2. China University of Petroleum (Beijing), School of Geophysics, State Key Laboratory of Petroleum Resources and Prospecting; CNPC, Key Laboratory of Geophysical Exploration, Changping, Beijing, China..

3. INOVA, Sugar Land, Texas, USA..

4. INOVA, Zhuozhou, He Bei, China..

Abstract

Seismic vibrators have become the preferred sources for land seismic exploration. The objective of the vibrator is to transmit a known and spatially stable source wavelet so that any variations in seismic reflection data can be used to estimate the rock properties and geometries of subsurface geology. Unfortunately, the spatial variation of the ground surface can impact the vibrator performance. Field tests have revealed that the vibrator ground force decreases dramatically on unconsolidated sandy surface conditions, and the effect increases as the vibrator shakes toward high frequencies. A theoretical study is provided to explain this repeatable phenomenon that is independent of vibrator source control systems. Moreover, a practical solution, “BP control,” remedies this reduction in ground force over unconsolidated surfaces, especially sand, by introducing a new effective baseplate weight factor into the vibrator source controller. Field test results illustrate an increase in vibrator ground force at higher-frequency conditions over unconsolidated sand when implementing this new effective baseplate into the vibrator source controller. This increase in ground force may improve the recoverable bandwidth and lead to higher-resolution seismic images when encountering these surface conditions.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3