VELOCITY OF COMPRESSIONAL WAVES IN POROUS MEDIA AT PERMAFROST TEMPERATURES

Author:

Timur A.1

Affiliation:

1. Chevron Research Company, La Habra, California

Abstract

Measurements of velocity of compressional waves in consolidated porous media, conducted within a temperature range of 26 °C to −36 °C, indicate that: (1) compressional wave velocity in water‐saturated rocks increases with decreasing temperature whereas it is nearly independent of temperature in dry rocks; (2) the shapes of the velocity versus temperature curves are functions of lithology, pore structure, and the nature of the interstitial fluids. As a saturated rock sample is cooled below 0 °C, the liquid in pore spaces with smaller surface‐to‐volume ratios (larger pores) begins to freeze and the liquid salinity controls the freezing process. As the temperature is decreased further, a point is reached where the surface‐to‐volume ratio in the remaining pore spaces is large enough to affect the freezing process, which is completed at the cryohydric temperature of the salts‐water system. In the ice‐liquid‐rock matrix system, present during freezing, a three‐phase, time‐average equation may be used to estimate the compressional wave velocities. Below the cryohydric temperature, elastic wave propagation takes place in a solid‐solid system consisting of ice and rock matrix. In this frozen state, the compressional wave velocity remains constant, has its maximum value, and may be estimated through use of the two‐phase time average equation. Limited field data for compressional wave velocities in permafrost indicate that pore spaces in permafrost contain not only liquid and ice, but also gas. Therefore, before attempting to make velocity estimates through the time‐average equations, the natures and percentages of pore saturants should be investigated.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3