Migration of seismic data from inhomogeneous media

Author:

Hatton Les1,Larner Ken2,Gibson Bruce S.2

Affiliation:

1. Western Geophysical Co., Houston

2. Westem Geophysical Co., P.O. Box 2469, Houston, TX 77001

Abstract

Because conventional time‐migration algorithms are founded on the implicit assumption of locally lateral homogeneity, they leave events mispositioned when overburden velocity varies laterally. The ray‐theoretical depth migration procedure of Hubral often can provide adequate first‐order corrections for such position errors. Complex geologic structure, however, can so severely distort wavefronts that resulting time‐migrated sections may be barely interpretable and thus not readily correctable. A more accurate, wave‐theoretical approach to depth migration then becomes essential to image the subsurface properly. This approach, which transforms an unmigrated time section directly into migrated depth, more completely honors the wave equation for a medium in which variations in interval velocity and details of structural shape govern wave propagation. Where geologic structure is complicated, however, we usually lack an accurate velocity model. It is important, therefore, to understand the sensitivity of depth migration to velocity errors and, in particular, to assess whether it is justified to go to the added effort of doing depth migration. We show a synthetic data example in which the wave‐theoretical approach to depth migration properly images deep reflections that are poorly resolved and left distorted by either time migration or ray‐theoretical depth migration. These imaging results are, moreover, surprisingly insensitive to errors introduced into the velocity model. Application to one field data example demonstrates the superior treatment of amplitude and waveform by wave‐theoretical depth migration. In a second data example, deep reflections are so influenced by anomalous overburden structure that the only valid alternative to performing wave‐theoretical depth migration is simply to convert the unmigrated data to depth. When the overburden is laterally variable, conventional time migration of unstacked data can be as destructive to steeply dipping reflections as is CDP stacking prior to migration. A schematic example illustrates that when migration of unstacked data is judged necessary, it should normally be performed as a depth migration.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unveiling Accurate Seismic Imaging through the Advanced Target-Oriented Kirchhoff Migration Method;Applied Sciences;2023-09-23

2. Wave-equation time migration;GEOPHYSICS;2021-01-01

3. Index;Seismic Wave Theory;2019-03-28

4. Answers to Selected Exercises;Seismic Wave Theory;2019-03-28

5. Plane Waves in Anelastic Media;Seismic Wave Theory;2019-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3