Seismic monitoring of fluid fronts: An experimental study

Author:

Wulff Angelika‐M.1,Mjaaland Svein2

Affiliation:

1. Formerly SINTEF Petroleum Research, N‐7465 Trondheim, Norway; presently Jason Geosystems, Plaza Building Weena 598, P.O. Box 1573, 3000 BN Rotterdam, The Netherlands.

2. SINTEF Petroleum Research, N‐7465 Trondheim, Norway.

Abstract

Seismic signatures of time‐dependent reservoir processes, necessary for the interpretation of 4‐D seismic data, are still insufficiently described. This experiment was designed to monitor fluid‐front movements and saturation changes and to identify the related seismic signatures. Ultrasonic P‐ and S‐wave transmission and reflection measurements were used to monitor the waterflooding of a porous sandstone. The sandstone was flooded in steps by filling a tank in which the room‐dry cubic (50‐cm side) block of rock was placed. Waterflooding caused the velocity, amplitude, and frequency of the transmitted waves to diminish significantly; however, the changes were reversible by drying. The maximum reduction of the velocities was 7% and 12% for P‐ and S‐waves, respectively. The velocity and amplitude behavior can be explained by the Biot‐Gassmann's theory, local fluid flow, and grain‐surface effects. The correct interpretation of seismic signatures of fluid processes in reservoirs thus involves a knowledge of rock physical relations and attenuation mechanisms. Even at small saturations, reflections from the block bottom were strongly attenuated, but those from the upgoing water front could be monitored. The latter reflections were best observed in differential seismic traces, confirming that seismic monitoring can observe moving fronts directly.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference26 articles.

1. Influence of frequency and fluid distribution on elastic wave velocities in partially saturated limestones

2. Hirsche, W. K., Sedgwick, G., and Wang, Z., 1990, Seismic monitoring in enhanced oil recovery: Internat. Tech. Mtg., CIM Petr. Soc./Soc. Petr. Eng., Preprints, 2, 72‐1–72‐13.

3. Wave speeds and attenuation of elastic waves in material containing cracks

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3