Crosswell electromagnetic tomography: System design considerations and field results

Author:

Wilt M. J.1,Alumbaugh D. L.2,Morrison H. F.3,Becker A.3,Lee K. H.4,Deszcz‐Pan M.2

Affiliation:

1. Lawrence Livermore National Lab, P.O. Box 808, L-156, Livermore, CA 94550

2. Lawrence Berkeley Laboratory

3. Dept. of Mineral Engineering, 577 Evans Hall, University of California at Berkeley, Berkeley, CA 94720

4. Lawrence Berkeley Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720

Abstract

Electrical conductivity is an important petroleum reservoir parameter because of its sensitivity to porosity, pore fluid type, and saturation. Although induction logs are widely used to obtain the conductivity near boreholes, the poor resolution offered by surface‐based electrical and electromagnetic (EM) field systems has thus far limited obtaining this information in the region between boreholes. Low‐frequency crosswell EM offers the promise of providing subsurface conductivity information at a much higher resolution than was previously possible. Researchers at Lawrence Livermore National Lab (LLNL) and Lawrence Berkeley Laboratories (LBL), together with an industrial consortium, recently began a program to conduct low‐frequency crosswell EM surveys and develop suitable inversion techniques for interpreting the data. In developing the field instrumentation we used off‐the‐shelf components whenever possible, but custom‐designed induction coil transmitters and receivers were built for the field experiments. The assembled field system has adequate power for moderate to high‐resolution imaging, using boreholes spaced up to 500 m apart. The initial field experiment was undertaken in flat lying terrain at the British Petroleum test site in Devine, Texas. Using wells spaced 100 m apart, we collected a complete crosswell EM data set encompassing a 30 m thick, 10 ohm‐m limestone layer at a depth of 600 m. The resulting profiles were repeatable to within 1% and showed an excellent sensitivity to the layered structure, closely matching the borehole induction resisitivity log. At the UC Richmond field station, crosswell EM measurements were made to track an injected slug of salt water. Conductivity images of data collected before and after injection showed a clear anomaly as a result of the salt water plume and indicated that the plume had migrated in a northerly direction from the injection borehole.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3