Can fracture orientation and intensity be detected from seismic data? Woodford Formation, Anadarko Basin, Oklahoma investigation

Author:

Rauch-Davies Marianne1,Langton David1,Bradshaw Michael2,Bartana Allon2,Kosloff Dan2,Codd Jeff2,Kessler David2,Rich Jamie3,Margrave Gary4

Affiliation:

1. Devon Energy Corp., Oklahoma City, Oklahoma, USA..

2. SeismicCity Inc., Houston, Texas, USA..

3. Cimarex Energy Co., Tulsa, Oklahoma, USA..

4. University of Calgary, Department of Geoscience, Calgary, Alberta, Canada..

Abstract

With readily available wide-azimuth, onshore, 3D seismic data, the search for attributes utilizing the azimuthal information is ongoing. Theoretically, in the presence of ordered fracturing, the seismic wavefront shape changes from spherical to nonspherical with the propagation velocity being faster parallel to the fracturing and slower perpendicular to the fracture direction. This concept has been adopted and is used to map fracture direction and density within unconventional reservoirs. More specifically, azimuthal variations in normal moveout velocity or migration velocity are often used to infer natural fracture orientation. Analyses of recent results have called into question whether azimuthal velocity linked to intrinsic azimuthal velocity variations can actually be detected from seismic data. By use of 3D orthorhombic anisotropic elastic simulation, we test whether fracture orientation and intensity can be detected from seismic data. We construct two subsurface models based on interpreted subsurface layer structure of the Anadarko Basin in Oklahoma. For the first model, the material parameters in the layers are constant vertically transverse isotropic (VTI) in all intervals. The second model was constructed the same way as the base model for all layers above the Woodford Shale Formation. For the shale layer, orthorhombic properties were introduced. In addition, a thicker wedge layer was added below the shale layer. Using the constructed model, synthetic seismic data were produced by means of 3D anisotropic elastic simulation resulting in two data sets: VTI and orthorhombic. The simulated data set was depth migrated using the VTI subsurface model. After migration, the residual moveouts on the migrated gathers were analyzed. The analysis of the depth-migrated model data indicates that for the typical layer thicknesses of the Woodford Shale layer in the Anadarko Basin, observed and modeled percentage of anisotropy and target depth, the effect of intrinsic anisotropy is too small to be detected in real seismic data.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3