Application of structural interpretation and simultaneous inversion to reservoir characterization of the Duvernay Formation, Fox Creek, Alberta, Canada

Author:

Weir Ronald1,Lawton Don1,Lines Laurence1,Eyre Thomas1,Eaton David1

Affiliation:

1. University of Calgary, Calgary, Alberta, Canada..

Abstract

Simultaneous prestack inversion of multicomponent 3D seismic data integrated with structural interpretation can provide an effective workflow to maximize value for unconventional plays. We outline an integrated workflow for characterizing the Duvernay play in western Canada, an emerging world-class low-permeability unconventional resource fairway. This workflow includes the determination of a time-depth relationship using synthetic seismograms, generation of seismic-derived time- and depth-converted structural maps, and calculation of inversion-based parameters of density and P- and S-wave velocity. The model-based procedure includes poststack (acoustic) inversion, amplitude variation with offset prestack inversion, and joint PP-PS inversion. With these rock properties determined, calculations are made to determine Young's modulus, Poisson's ratio, and brittleness. Faults are mapped based on time slices, isochrons, and correlatable vertical displacements of stratigraphic marker reflections. Significant strike-slip movements are identified by lateral displacement on interpreted geologic features, such as channels and reef edges. Seismic-derived attributes, combined with structural mapping, highlight zones that are conducive to hydraulic fracturing as well as areas unfavorable for development. Mapping of structural discontinuities provides a framework for understanding zones of preexisting weakness and induced-seismicity hazards.

Funder

Canada First Research Excellence Fund, Government of Canada, Natural Sciences and Engineering Research Council of Canada

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference27 articles.

1. Fault activation by hydraulic fracturing in western Canada

2. Cho, D., and M. Perez, 2014, Brittleness revisited: GeoConvention 2014, https://www.geoconvention.com/archives/2014/263_GC2014_Brittleness_revisited.pdf, accessed 2 January 2019.

3. Seismic reservoir characterization of Duvernay shale with quantitative interpretation and induced seismicity considerations — A case study

4. Hydrocarbon generation and migration in the Western Canada sedimentary basin

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3