Absorbing boundary condition for the elastic wave equation

Author:

Randall C. J.1

Affiliation:

1. Schlumberger Well Services, 5000 Gulf Freeway, Houston, TX 77252-2175

Abstract

Extant absorbing boundary conditions for the elastic wave equation are generally effective only for waves nearly normally incident upon the boundary. High reflectivity is exhibited for waves traveling obliquely to the boundary. In this paper, a new and efficient absorbing boundary condition for two‐dimensional and three‐dimensional finite‐difference calculations of elastic wave propagation is presented. Compressional and shear components of the incident vector displacement fields are separated by calculating intermediary scalar potentials, allowing the use of Lindman’s boundary condition for scalar fields, which is highly absorbing for waves incident at any angle. The elastic medium is assumed to be homogeneous in the region immediately adjacent to the boundary. The reflectivity matrix of the resulting absorbing boundary for elastic waves is calculated, including the effects of finite‐difference truncation error. For effectively all angles of incidence, reflectivities are much smaller than those of the commonly employed paraxial absorbing boundaries, and the boundary condition is stable for any physical Poisson’s ratio. The nearly complete absorption predicted by the reflectivity matrix calculations, even at near grazing incidence, is demonstrated in a finite‐difference application.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of 3D Anisotropic Seismic Imaging Technology;Journal of the Korean Society of Mineral and Energy Resources Engineers;2022-04-30

2. Theoretical and quantitative evaluation of hybrid PML-ABCs for seismic wave simulation;Earthquake Science;2022-04

3. Prediction and Monitoring of the Construction Vibration Effect on an Adjacent Old Long Span Double-Convex Arch Bridge;KSCE Journal of Civil Engineering;2022-02-18

4. Bibliography;Wave Fields in Real Media;2022

5. Numerical methods;Wave Fields in Real Media;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3