MAGNETIC WELL LOGGING

Author:

Broding R. A.1,Zimmerman C. W.1,Somers E. V.1,Wilhelm E. S.1,Stripling A. A.1

Affiliation:

1. Magnolia Petroleum Company Field Research Laboratories, Dallas, Texas

Abstract

The need for control data in interpretation of surface magnetometer surveys has led to the development of borehole instruments for measuring magnetic susceptibility and total magnetic field in situ. The susceptibility instrument is an alternating current induction device, and by separation of the quadrature components simultaneous recording of the magnetic susceptibility and the electrical conductivity is possible. The susceptibility log has many features that depart from ordinary electric logs. The instrument has a sensitivity of the order of [Formula: see text] cgs units and sufficient contrast has been found in the sediments to yield a log of considerable lithologic character. This magnetic character suggests the use of the susceptibility tool in the field of special well logging, particularly for geologic correlation, and for tracer studies. The general assumption that the magnetic susceptibility of the sediments is sufficiently low compared to basic igneous rocks so that sedimentary rocks have little effect on surface magnetometer measurements has been verified. Since the magnetic susceptibility and electrical conductivity logs are made with an induction instrument, an electrolyte is not required in the hole and the logs are independent of the drilling fluid, except that the conductivity log is influenced by highly conductive muds. The total field log is made with a three element self‐orientating saturable core magnetometer that has been developed for borehole use. This log has not been used extensively. In addition to reflecting changes in polarization of the formations, it is influenced by formation susceptibility. Logs have been made of the total field going into and through igneous plugs. The paper presents examples of these logs along with a brief description of the instruments developed to produce them.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3