The Garden Banks model experience

Author:

Dellinger Joe1,Brenders Andrew J.1,Sandschaper J. R.1,Regone Carl1,Etgen John1,Ahmed Imtiaz1,Lee K. J.2

Affiliation:

1. BP America.

2. SK E&P America.

Abstract

To better understand deepwater imaging challenges in the Gulf of Mexico, we constructed a large 3D model based on the complex salt geology of the Garden Banks protraction area. We simulated a regional wide-azimuth (WAZ) streamer survey with offsets of ±8 km inline and ±4 km crossline over this model. Using the true velocity model, reverse time migration of this data set produced a usable subsalt image nearly everywhere. The same synthetic seismic data set was passed to interpreters and geophysicists to process and image as if it were real field data. They did not get to see the true velocity model. Instead they performed conventional “migrate, pick, and flood” top-down velocity-model building, followed by final imaging through their interpreted velocity model. Where the salt was relatively simple, we found that the interpreted velocity model was reasonably accurate. Reverse time migration of the seismic data through these parts of the velocity model produced an image that was imperfect, but still usable for exploration-scale, structural interpretation. Where the salt structure was complex, however, it was sometimes grossly misinterpreted. The ensuing large-scale errors in the interpreted velocity model resulted in an unusable, shattered subsalt image. We next simulated a low-frequency, ocean-bottom-node (OBN) acquisition, with offsets up to 30 km in all azimuths. We started with the imperfect model produced by the interpreters and investigated what it would take for full-waveform inversion (FWI) to successfully find and fix the gross interpretation errors. Initial results suggest this “interpretation followed by FWI” methodology could produce a velocity model capable of generating an adequate subsalt image, but it may require ultrawide offsets (30 km), ultralow frequencies (below 2 Hz), and improved FWI algorithms to do so.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3