Fast, high-resolution beam tomography and velocity-model building

Author:

Tanushev Nick1,Popovici Alexander Mihai1,Hardesty Sean1

Affiliation:

1. Z-Terra Inc.

Abstract

We present a wide-azimuth beam tomography based on fast beam migration and a method for automatically estimating the rms velocity. This combination allows us to have a direct “input data to velocity model” workflow that does not involve laborious manual user interaction other than quality control (QC). The estimated rms velocity model serves as an initial model for tomography. A 3D residual-moveout (RMO) method enables a very rapid estimation of the depth or time delays along each ray, which represent the direct input to a tomographic update, without the time-consuming steps required for traditional tomography, including preparing the gathers for semblance analysis, semblance picking, and back-projection picks QC. A 2000 km2 velocity model can be updated using 400 CPUs in less than five minutes on a 20 m by 20 m by 20 m velocity-model grid. In addition, beam tomography retains the true azimuthal information. This allows the tomographic update to go beyond the current limitation of limited wide-azimuth velocity updates. Beam tomography allows for faster turnaround time for large 3D seismic projects and, at the same time, increases the accuracy of the velocity model by using wide-azimuth information that is typically unavailable in traditional tomography. In addition to a single-parameter update (one time delay or residual velocity value for each image point) and multiple-parameter update (time delay depends on offset), we now have a wide-azimuth and offset update (time delay depends on offset and azimuth).

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vector-based seismic decomposition by reverse time methods;Russian Journal of Earth Sciences;2023-08-13

2. High-resolution beam tomography on 3D land data applications;First International Meeting for Applied Geoscience & Energy Expanded Abstracts;2021-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3