High-frequency electromagnetic impedance method for subsurface imaging

Author:

Song Yoonho1,Kim Hee Joon2,Lee Ki Ha3

Affiliation:

1. Korea Institute of Geoscience and Mineral, Resources, 30 Kajung-Dong, Yusung-Gu, Taejon 305-350, Korea.

2. Pukyong National University, Department of Exploration Engineering, 599-1 Daeyeon-Dong, Nam-Gu, Pusan 608-737, Korea.

3. Lawrence Berkeley, National Laboratory, Earth Sciences Division, MS 90-1116, 1 Cyclotron Rd., Berkeley, California 94720.

Abstract

This paper presents a high-frequency electromagnetic (EM) impedance method that extends the utility of conventional controlled-source audio-frequency magnetotelluric (CSAMT) method to the frequency range from 100 kHz to 100 MHz. In this frequency range diffusion and wave propagation must be considered together. In principle, both the electrical conductivity and the permittivity of the shallow subsurface can be imaged using impedance data gathered on the surface of the earth. The impedance approach has a distinct advantage in that coupling with the source is unnecessary, provided that the source can be positioned far enough away to yield plane waves at the receiver positions. At high frequencies the EM impedance is a function of the angle of incidence or the horizontal wavenumber, so the electrical properties cannot be readily extracted without eliminating the effect of horizontal wavenumber on the impedance. For this purpose, this paper considers two independent methods for accurately determining the horizontal wavenumber, which in turn is used to correct the impedance data. The apparent electrical properties derived from the corrected impedance data correlate poorly to the real structure, especially for the model with a resistive overburden. However, the impedance data along with the incidence angles thus estimated can be successfully inverted to yield an accurate subsurface layering through the simulated annealing inversion scheme.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3