Compatibility of high-altitude aeromagnetic and satellite-altitude magnetic anomalies over Canada

Author:

Ravat D.1,Whaler K. A.2,Pilkington M.3,Sabaka T.4,Purucker M.4

Affiliation:

1. Southern Illinois University at Carbondale, Department of Geology, MS 4324, Carbondale, Illinois 62901-4324.

2. Grant Institute, Department of Geology and Geophysics, West Mains Road, Edinburgh EH9 3JW, Scotland.

3. Geological Survey of Canada, 615 Booth St., Ottawa, Ontario K1A 0E9, Canada.

4. Raytheon-STX/Geodynamics Branch, Code 921, Goddard Space Flight Center, National Aeronautics & Space Administration, Greenbelt, Maryland 20771. Emails:

Abstract

Results from equivalent-source distributions derived jointly from high-altitude (average 4 km) aeromagnetic and Magsat-derived (average 400 km) magnetic anomalies over Canada indicate that long-wavelength components (500–2500 km) in these fields are extremely compatible with one another (with a correlation coefficient of 0.95). The jointly estimated anomaly field at the earth's surface can be used as a long-wavelength adjustment surface for regional near-surface magnetic anomaly compilations and in assessing the performance of other downward-continuation techniques. Because near-surface anomalies are not available over all regions of the world, we compare the jointly estimated anomaly field to the results of two different downward-continuation techniques: the evaluation of anomalies at the earth's surface from spherical harmonic coefficients derived from satellite-altitude data and the use of downward-continuation methods based on harmonic splines. Numerical and visual comparisons of these downward- continued fields with the jointly estimated anomaly field from the equivalent-source method indicate they are well correlated and could provide a useful method of deriving long-wavelength leveling surfaces for regional and worldwide magnetic anomaly maps.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3