Analysis of electrical conduction in the grain consolidation model

Author:

Schwartz Lawrence M.1,Kimminau Stephen2

Affiliation:

1. Schlumberger‐Doll Research, Old Quarry Road, Ridgefield, CT 06877-4108

2. Schlumberger Well Services, P.O. Box 2175, 5000 Gulf Freeway, Houston, TX 77023

Abstract

In the grain consolidation model the diagenetic processes of compaction and cementation are represented in terms of the growth of an array of originally spherical grains. Grain growth toward the nodes of the pore space leads to an electrical formation factor F(ϕ) that increases slowly as the porosity ϕ decreases. By contrast, grain growth toward the throats of the pore space leads to a rapidly increasing F(ϕ). In all the cases we have examined, the value of the percolation threshold, [Formula: see text] is less than 0.055. Network simulation techniques have been developed to calculate the electrical conductivity of the ordered versions of the grain consolidation model. We find that the minimum‐area approximation employed in our earlier work is generally quite satisfactory. The network techniques can also be used to model the effects of mixed pore‐space fluid saturation, with results that are physically reasonable although not necessarily in agreement with empirical rules regarding saturation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3