Improved in situ mineral and petrophysical interpretation with neutron-induced gamma-ray spectroscopy elemental logs

Author:

Ajayi Oyinkansola1,Torres-Verdín Carlos2

Affiliation:

1. The University of Texas at Austin, Petroleum and Geosystems Engineering, Austin, Texas, USA..

2. The University of Texas at Austin, Department of Petroleum and Geosystems Engineering, Austin, Texas, USA..

Abstract

Neutron logs are routinely expressed as apparent neutron porosity based on the assumption of a freshwater-saturated homogeneous formation with solid composition equal to either sandstone, limestone, or dolomite. Rock formations are often extremely heterogeneous and consist of different minerals and fluids in varying proportions, which cause simultaneous matrix and fluid effects on neutron logs. Detailed quantification of formation mineral composition enables the correction of matrix effects on measured neutron logs to unmask fluid effects; this in turn enables accurate quantification of porosity and water saturation. Neutron-induced gamma-ray spectroscopy is one of the most direct means available to quantify in situ formation mineralogy but available spectroscopy-based interpretation methods are usually tool dependent and incorporate empirical correlations. We have developed a new interpretation method to quantify mineral concentrations through the joint nonlinear matrix inversion of measured spectroscopy elemental weight concentrations and matrix-sensitive logs, such as gamma ray, matrix photoelectric factor, matrix sigma (neutron capture cross section), and matrix density. The estimated mineralogy was used in the correction of matrix effects on porosity logs and subsequent calculation of true formation porosity. The water saturation was quantified through joint petrophysical interpretation of matrix-corrected porosities and resistivity measurements using an appropriate saturation model. The developed inversion-based interpretation method is applicable to a wide range of formation lithologies, well trajectories, and borehole environments (including open and cased hole environments), and it is independent of tool and neutron source type. Verification results with synthetic and field cases confirm that the spectroscopy-based algorithm is reliable and accurate in the quantification of mineral concentrations, matrix properties, porosity, and hydrocarbon saturation.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference31 articles.

1. Ajayi, O., C. Torres-Verdín, and W. E. Preeg, 2014, Rapid simulation and inversion-based interpretation of gamma ray spectroscopy logs in high-angle and horizontal wells: 55th Annual Logging Symposium, Transactions of the Society of Petrophysicists and Well Log Analysts, paper VVV.

2. DUAL‐SPACED NEUTRON LOGGING FOR POROSITY

3. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3