Semisupervised multiattribute seismic facies analysis

Author:

Qi Jie1,Lin Tengfei1,Zhao Tao1,Li Fangyu1,Marfurt Kurt1

Affiliation:

1. University of Oklahoma, ConocoPhillips School of Geology and Geophysics, Norman, Oklahoma, USA..

Abstract

One of the key components of traditional seismic interpretation is to associate or “label” a specific seismic amplitude package of reflectors with an appropriate seismic or geologic facies. The object of seismic clustering algorithms is to use a computer to accelerate this process, allowing one to generate interpreted facies for large 3D volumes. Determining which attributes best quantify a specific amplitude or morphology component seen by the human interpreter is critical to successful clustering. Unfortunately, many patterns, such as coherence images of salt domes, result in a salt-and-pepper classification. Application of 3D Kuwahara median filters smooths the interior attribute response and sharpens the contrast between neighboring facies, thereby preconditioning the attribute volumes for subsequent clustering. In our workflow, the interpreter manually painted [Formula: see text] target facies using traditional interpretation techniques, resulting in attribute training data for each facies. Candidate attributes were evaluated by crosscorrelating their histogram for each facies with low correlation implying good facies discrimination, and Kuwahara filtering significantly increased this discrimination. Multiattribute voxels for the [Formula: see text] interpreter-painted facies were projected against a generative topographical mapping manifold, resulting in [Formula: see text] probability density functions (PDFs). The Bhattacharyya distance between the PDF of each unlabeled voxel to each of [Formula: see text] facies PDFs resulted in a probability volume of each user-defined facies. We have determined the effectiveness of this workflow to a large 3D seismic volume acquired offshore Louisiana, USA.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3