Nuclear magnetic resonance secular relaxation measurements as a method of extracting internal magnetic field gradients and pore sizes

Author:

Johnson Andrew1,Daigle Hugh1

Affiliation:

1. University of Texas at Austin, Department of Petroleum and Geosystems Engineering, Austin, Texas, USA..

Abstract

Nuclear magnetic resonance (NMR) has been used as a common and powerful tool for petrophysical investigation of fluid-bearing porous media. A major complication of NMR analysis occurs, however, when diffusion of fluid protons through magnetic field heterogeneities becomes nonnegligible. A quantity called the secular relaxation rate ([Formula: see text]) has been defined as the difference in transverse and longitudinal relaxation rates ([Formula: see text]-[Formula: see text]) and can be shown to isolate the effects of diffusion as a function of pore system parameters. We have developed results that extract internal magnetic field gradient strengths based on changes in [Formula: see text] as a function of the NMR interecho spacing. We also indicated that an optimization algorithm can be used to invert for volumetrically weighted mean pore sizes. The benefit of these types of analyses is to provide simple methodologies for inferring the average strengths of internal magnetic field gradients and pore sizes from NMR measurements without the need for independent measurements of pore size, such as from mercury injection porosimetry. In addition, secular relaxation analysis removes complicating effects provided by bulk fluid and other nondiffusion relaxation mechanisms.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3