Theory of microwave dielectric constant logging using the electromagnetic wave propagation method

Author:

Freedman R. (Bob)1,Vogiatzis John P.1

Affiliation:

1. Shell Development Company, P.O. Box 481, Houston, TX 77001

Abstract

The composite dielectric constants of earth formations at microwave frequencies are strongly dependent on formation water saturations and relatively independent of water salinities. Therefore, microwave frequency dielectric constant logging offers an attractive new electromagnetic (EM) method of formation evaluation. The EM wave propagation method of dielectric constant logging attempts to deduce the dielectric properties of earth formations from phase shift and attenuation measurements of EM field, which have been propagated in the formation. A device which utilizes this method of well logging has been proposed by Calvert (1974) and Rau (1976) in two recent U.S. patents. We discuss the basic physics underlying the operation of a device of this type and describe the plane wave procedure discussed by these authors for relating the phase shift and attenuation measurements made by such a device to the formation dielectric properties. This procedure is suspect, since it is based on an unrealistic plane wave model which fails to treat the radiation field correctly and ignores the presence of a layer of mud cake which separates the antenna pad from the formation. To determine the errors likely to be inherent in using this procedure in practice, we consider several simple theoretical models of an EM wave propagation tool. Computer experiments performed on these theoretical models indicate that the apparent formation traveltimes obtained by using this procedure are semiquantitatively accurate with relative errors less than five percent in most cases. For our theoretical models, correction plots or departure curves are demonstrated which enable one to deduce the true formation traveltimes, given the apparent values and a knowledge of the dielectric properties and thickness of the mud cake. The problems which remain if this new method of logging is to attain its full potential (e.g., the accurate determination of formation fluid saturations) are discussed.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3