Seismic velocities in transversely isotropic media

Author:

Levin Franklyn K.1

Affiliation:

1. Exxon Production Research Company, P.O. Box 2189, Houston, TX 77001

Abstract

When a sedimentary earth section is layered on a scale much finer than the wavelength of seismic waves, the waves average the physical properties of the layers; a seismic wave acts as if it were traveling in a single, transversely isotropic solid. We compute the velocities with which P‐waves, SV‐waves, and SH‐waves travel in transversely isotropic solids formed from two‐component solids and find the corresponding moveout velocities from [Formula: see text] plots. The combinations studied are sandstone and shale, shale and limestone, water sand and gas sand, and gypsum and unconsolidated material, one set of typical physical properties being selected for each component of a combination. A reflector at 1524 m and a geophone spread of 0–3048 m are assumed. The moveout velocity for an SH‐wave is always the velocity for a wave traveling in the horizontal direction. The P‐wave moveout velocity found from surface seismic data can be anywhere from the vertical P‐wave velocity to values between those for vertical and horizontal travel; the actual value depends on the elastic parameters and the spread length used for velocity determination. If the two components of the solid have the same Poisson’s ratio, the velocity from surface‐recorded data is the vertical P‐wave velocity. For this case, SH‐wave anisotropy can be computed. SV‐wave data usually do not have hyperbolic time‐distance curves, and the moveout velocity found varies with spread length. Surprisingly, the water sand‐gas sand combination gives a medium with negligible anistropy. A two‐component combination of gypsum in weathered material gives rise to [Formula: see text] plots that seem to explain the unusual behavior of near‐surface SV‐waves seen in field studies reported by Jolly (1956).

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3