Modeling near‐field GPR in three dimensions using the FDTD method

Author:

Roberts Roger L.1,Daniels Jeffrey J.2

Affiliation:

1. GSSI, 13 Klein Drive, North Salem, New Hampshire 03073-0097.

2. Department of Geological Sciences, Ohio State University, 377 Mendenhall Laboratory, Columbus, Ohio 43210-1110.

Abstract

Complexities associated with the theoretical solution of the near‐field interaction between the fields radiated from dipole antennas placed near a dielectric half‐space and electrical inhomogeneities within the dielectric can be overcome by using numerical techniques. The finite‐difference time‐domain (FDTD) technique implements finite‐difference approximations of Maxwell's equations in a discretized volume that permit accurate computation of the radiated field from a transmitting antenna, propagation through the air‐earth interface, scattering by subsurface targets and reception of the scattered fields by a receiving antenna. In this paper, we demonstrate the implementation of the FDTD technique for accurately modeling near‐field time‐domain ground‐penetrating radar (GPR). This is accomplished by incorporating many of the important GPR parameters directly into the FDTD model. These variables include: the shape of the GPR antenna, feed cables with a fixed characteristic impedance attached to the terminals of the antenna, the height of the antenna above the ground, the electrical properties of the ground, and the electrical properties and geometry of targets buried in the subsurface. FDTD data generated from a 3-D model are compared to experimental antenna impedance data, field pattern data, and measurements of scattering from buried pipes to verify the accuracy of the method.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3