The reconstruction of the magnetotelluric impedance tensor: An adaptive parametric time‐domain approach

Author:

Yee E.1,Kosteniuk P. R.2,Paulson K. V.2

Affiliation:

1. Cybernetics Laboratory, Department of Physics, University of Saskatchewan

2. Cybernetics Laboratory, Department of Physics, University of Saskatchewan, Saskatoon, Sask., Canada S7N 0W0

Abstract

Magnetotelluric (MT) data processing for the estimation of the impedance tensor is usually carried out in the frequency domain using nonparametric methods of spectral analysis. In this paper, the impedance tensor is reconstructed using an adaptive parametric time‐domain approach, whereby the observed MT data are used directly in the estimation process without the need for a frequency‐domain transformation. In such a reconstruction, the impedance tensor is represented by a rational‐form or matrix‐fraction model. The parameters for this model are determined using a recursive instrumental variables (RIV) adaptation algorithm, allowing on‐line real‐time application. This adaptation algorithm is capable of providing consistent estimates for the impedance tensor from only the observed (i.e., noisy) MT field data and auxiliary information in the form of measurements of the contemporaneous components of the magnetic field at some remote site. Hence, the RIV algorithm provides a time‐domain implementation of the remote‐reference MT method, which has been applied with good success for unbiased impedance tensor determination in the frequency domain for moderate‐to‐high‐level noise conditions.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Magnetotelluric Data Denoising Method Based on Lightweight Ensemble Learning;IEEE Transactions on Geoscience and Remote Sensing;2024

2. A Parametric Method for Robust Magnetotelluric Transfer Function Estimation Evaluated with Data at Different Sampling Frequencies;IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium;2022-07-17

3. Denoising Application of Magnetotelluric Low-Frequency Signal Processing;IEEE Transactions on Geoscience and Remote Sensing;2022

4. ADMM-Based Method for Estimating Magnetotelluric Impedance in the Time Domain;IEEE Transactions on Geoscience and Remote Sensing;2022

5. Parametric electromagnetic transfer function estimation at USArray Site MNF34;IOP Conference Series: Earth and Environmental Science;2019-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3