Air‐gun signatures and the minimum‐phase assumption

Author:

Hargreaves Neil D.1

Affiliation:

1. Western Geophysical, 455 London Road, Isleworth, Middlesex TW7 5AB, England

Abstract

The air‐gun array signature is close to minimum‐phase as a function of continuous time, in the sense that for processing purposes its phase spectrum can be derived from the Hilbert transform of the logarithm of its amplitude spectrum. This phase spectrum is different, however, from the minimum‐phase spectrum that is estimated by spiking deconvolution for a sampled and time‐windowed version of the signature. As a consequence, there can be large phase errors when spiking deconvolution is applied to an air‐gun signature or to a recording instrument response. The errors can be shown to consist primarily of a time shift and, at least visually over a limited bandwidth, a phase rotation of the output wavelet. The time shift is introduced by time sampling, while the phase rotation is caused by the spectral smoothing generated by time windowing. If the seismic wavelet as a whole, and not just the air‐gun signature, is minimum‐phase, then the total residual phase error after spiking deconvolution, including also the error due to data noise, can also be shown to be close to a time shift and a phase rotation. This may be physical justification for the phase rotation schemes that are often successful in matching seismic data and well‐log synthetics. The minimum‐phase assumption can be used for statistical air‐gun array signature deconvolution, providing that a limited amount of deterministic information (the instrument slopes and the source and receiver depths in the approach used here) is available to guide the process in those areas of the spectrum that are critical to the phase computation. Date examples show that, with care, almost identical results can then be obtained from either purely statistical deconvolution or deterministic deconvolution plus statistical deconvolution of multiples and ghosting.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3